Explorer Foxg 1 is required to limit the formation of ciliary margin tissue and Wnt / - catenin signalling in the developing nasal retina of the mouse
نویسندگان
چکیده
The ciliary margin (CM) develops in the peripheral retina and gives rise to the iris and the ciliary body. The Wnt/β-catenin signalling pathway has been implicated in ciliary margin development. Here, we tested the hypothesis that in the developing mouse retina Foxg1 is responsible for suppressing the Wnt/β-catenin pathway and restricting CM development. We showed that there is excess CM tissue in Foxg1 null embryos and this expansion is more pronounced in the nasal retina where Foxg1 normally shows its highest expression levels. Results on expression of a reporter allele for Wnt/β-catenin signalling and of Lef1, a target of Wnt/β-catenin signalling, displayed significant upregulation of this pathway in Foxg1 nulls at embryonic days 12.5 and 14.5. Interestingly, this upregulation was observed specifically in the nasal retina, where normally very few Wnt-responsive cells are observed. These results indicate a suppressive role of Foxg1 on this signalling pathway. Our results reveal a new role of Foxg1 in limiting CM development in the nasal peripheral retina and add a new molecular player in the developmental network involved in CM specification. & 2013 The Authors. Published by Elsevier Inc. All rights reserved.
منابع مشابه
Foxg1 is required to limit the formation of ciliary margin tissue and Wnt/β-catenin signalling in the developing nasal retina of the mouse☆
The ciliary margin (CM) develops in the peripheral retina and gives rise to the iris and the ciliary body. The Wnt/β-catenin signalling pathway has been implicated in ciliary margin development. Here, we tested the hypothesis that in the developing mouse retina Foxg1 is responsible for suppressing the Wnt/β-catenin pathway and restricting CM development. We showed that there is excess CM tissue...
متن کاملCiliary margin transdifferentiation from neural retina is controlled by canonical Wnt signaling.
The epithelial layers of the ciliary body (CB) and iris are non-neural structures that differentiate from the anterior region of the eyecup, the ciliary margin (CM). We show here that activation of the canonical Wnt signaling pathway is sufficient and necessary for the normal development of anterior eye structures. Pharmacological activation of beta-catenin signaling with lithium (Li(+)) treatm...
متن کاملIdentification of Wnt/β-catenin modulated genes in the developing retina
PURPOSE During mammalian eye development, the restriction of Wnt/β-catenin signaling at the junction of the neural retina and the retinal pigment epithelium in the peripheral eyecup is required for the development of the ciliary margin, a non-neural region of the eyecup that is the precursor of the ciliary body and iris of the adult eye. METHODS To identify genes that are modulated by β-caten...
متن کاملThe effect of 8 weeks of HIIT training and supplementation of black grape seed extract on Wnt and Β-catenin gene expression in pancreatic tissue in male rats with type 2 diabetes
Objective:The aim of the present study was to investigate the effect of 8 weeks of HIIT training and supplementation of black grape seed extract on Wnt and Β-catenin gene expression in pancreatic tissue in male rats with type 2 diabetes. Methods:In this experimental study, 40 male Wistar rats, with average weight of 250 ± 20 gr, after induction of diabetes by STZ, were randomly divided into 5 ...
متن کاملBeta-catenin Forms Protein Aggregation at High Concentrations in HEK293TCells
Background: The canonical Wnt signal transduction (or the Wnt/β-catenin pathway) plays a crucial role in the development of animals and in carcinogenesis. Beta-catenin is the central component of this signaling pathway. The activation of Wnt/β-catenin signaling results in the cytoplasmic and nuclear accumulation of β-catenin. In the nucleus, β-catenin interacts with the TCF/LEF transcription fa...
متن کامل